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deep image denoising



Noise in Imaging

In all imaging fields, images are cor-
rupted with noise:

𝑦 = 𝑥 + 𝑛, 𝑛 ∼ pnoise (1)
▶ 𝑦: the noisy observation
▶ 𝑥: the ground truth

Figure: CT scan with low dose

Figure: Speckle Noise in SAR imaging

Figure: Camera noise in low-light
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Image Denoising

For all these cases: difficult / impossible acquisition of noiseless images
⟹ Develop denoising algorithms!

Goal

Given any observation 𝑦 = 𝑥 + 𝑛, 𝑛 ∼ pnoise, where 𝑥 ∼ pdata, find an estimate ̂𝑥(𝑦) as close as possible
to 𝑥.

Characterization. The Mean Squared Error:

𝑀𝑆𝐸(𝑓) = E𝑥∼pdata ||𝑥 − 𝑓(𝑥 + 𝑛)||22 (2)

Optimal Estimator. The Minimal Mean Squared Error estimator:

𝑓𝑀𝑀𝑆𝐸(𝑦) ∶= argmin𝑓∈𝐹[E𝑥∼pdata (||𝑓(𝑦) − 𝑥||2) ] = E(𝑥|𝑦). (3)

What about deep denoisers?
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Deep Image Denoisers

Deep Learning setting

Optimization problem

min
𝜃∈Θ

E𝑥∼ ̂pdata,𝑛∼p̂noise ||𝑥 + 𝑓𝜃(𝑥 + 𝑛)||22 (4)

Solved with a variant of the SGD. 𝑓𝜃⋆ ≠ 𝑓𝑀𝑀𝑆𝐸 because of some approximations.
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Solved with a variant of the SGD. 𝑓𝜃⋆ ≠ 𝑓𝑀𝑀𝑆𝐸 because of some approximations.

The architecture. A restricted space of
possible solutions:

̂𝐹 = {𝑓𝜃|𝜃 ∈ Θ} (5)

𝑓𝜃(𝑥) ∶= 𝜎𝑁(𝑊 𝑇
𝑁(… (𝜎1(𝑊 𝑇

1 𝑥+𝑏1)) … )+𝑏𝑁)
(6)

Figure: DRUNet architecture [Zhang et al., 2021]
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Deep Image Denoisers

Deep Learning setting

Optimization problem

min
𝜃∈Θ

E𝑥∼ ̂pdata,𝑛∼p̂noise ||𝑥 + 𝑓𝜃(𝑥 + 𝑛)||22 (4)

Solved with a variant of the SGD. 𝑓𝜃⋆ ≠ 𝑓𝑀𝑀𝑆𝐸 because of some approximations.

The dataset. A discrete approximation
of pdata, given a dataset D:

̂pdata = 1
𝑁

𝑁
∑
𝑖=1

𝛿𝑥𝑖
, {𝑥𝑖}𝑖≤𝑁 = D (5)

Figure: Examples from the Imagenet dataset
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Deep Image Denoisers

Deep Learning setting

Optimization problem

min
𝜃∈Θ

E𝑥∼ ̂pdata,𝑛∼p̂noise ||𝑥 + 𝑓𝜃(𝑥 + 𝑛)||22 (4)

Solved with a variant of the SGD. 𝑓𝜃⋆ ≠ 𝑓𝑀𝑀𝑆𝐸 because of some approximations.

The noise. A Gaussian approximation of
noise

p̂noise = N(0, 𝜎2Id) (5)

▶ easy sampling
▶ iid hypothesis

Figure: 𝑥 ∼ p̂data, 𝑛 ∼ ̂pnoise, 𝑦 = 𝑥 + 𝑛 4/85



Deep Image Denoisers

Nonetheless! Extremely good performance of modern deep
denoisers.

Figure: Evolution of Denoising performances over time

Figure: Image denoising
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Deep Image Denoisers

Nonetheless! Extremely good performance of modern deep
denoisers.

Figure: Evolution of Denoising performances over time

Figure: : DRUNet
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BUT!

These approximations ⟹ some limitations for deep denoisers.

p̂data ≠ pdata

▶ datasets are finite
▶ datasets are therefore imbalanced

⟹ biases in the learnt denoisers
▶ Privacy / safety: real images contain

sensitive information

̂pnoise ≠ pnoise

▶ real noise is much more complex than
Gaussian noise

▶ not iid, signal dependent, correlated.
▶ ⟹ sub-optimal performance on

real-world scenarii

Other related issues: Surface-level explainability, unpredictible hallucinations, lack of generalization.
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A common strategy: Synthetic Learning

Definition

Training machine learning models on artificially generated data rather than real-world data.

part I

̂pdata → pVibrantLeaves

Vibrant Leaves: a new statistical image
model replicating key image properties

▶ sampling arbitrary amounts
▶ abstract images → no semantic/sensitive

information
▶ property factorization → explainability

part II

N(0, 𝜎2) → 2 Shots in the Dark

a novel camera noise generator
▶ very little calibration data required
▶ accurate modeling of noise correlations

and statistical properties
▶ ⟹ SOTA performance on real-world

low-light denoising benchmarks
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Part I : Replacing ̂𝑝data with 𝑝VibrantLeaves
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the dead leaves model: basic concept



The Dead Leaves Model: Basic concept

A random superimposition of shapes of random size, color, and positions.
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The Dead Leaves Model: Mathematical formulation

the dead leaves model

a random process (𝑥𝑖, 𝑡𝑖, 𝑋𝑖)𝑖∈N

▶ 𝑥𝑖, 𝑡𝑖 ∼ P = Σ𝛿𝑥𝑖,𝑡𝑖 , a Poisson point process on R2 × (−∞, 0]

▶ 𝑋𝑖 random sets of R2; usually the set of disks of radius 𝑟𝑖 ∼ 𝑝(𝑟)

Useful definitions:

▶ A leaf: the set of positions 𝑥𝑖 + 𝑋𝑖

▶ The visible part: the positions of a leaf which are not covered by previous leaves:
𝑉𝑖 = (𝑥𝑖 + 𝑋𝑖)\ ⋃𝑡𝑗∈(𝑡𝑖,0)(𝑥𝑗 + 𝑋𝑗)

▶ dead leaves tesselation: 𝑇 = ⋃𝑖 𝑉𝑖

▶ the dead leaves image: the result of coloring the visible parts with 𝑐𝑖 ∼ 𝑞(𝑐)
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Examples I

▶ 𝑟 ∼ 𝑐𝑜𝑛𝑠𝑡 ▶ 𝑐 ∼ U([0, 1]3)

Properties

artificial colors, constant shape size
→ not very natural.

Figure: Process sample
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Examples II

▶ 𝑟 ∼ 𝑐𝑜𝑛𝑠𝑡 ▶ 𝑐 ∼ color_histo(𝐼), 𝐼: natural image

Properties

colors sampled from a real image’s his-
togram
→ same color distribution
over-simplistic geometry.

Figure: Process sample
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Examples III

▶ 𝑟 ∼ 𝑝(𝑟) = 𝐶.𝑟−𝛼, usually 𝛼 = 3 ▶ 𝑐 ∼ color_histo(𝐼), 𝐼: natural image

Properties

natural colors + and power law distribu-
tion of the radius. Special case:
𝛼 = 3 → scale invariance property.

Figure: Process sample
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Advantages of the Dead Leaves Model

▶ few parameters /good compromise between
complexity and fidelity

▶ ”natural” statistical properties.
▶ direct control over contrast, colors.
▶ direct control over invariance properties:

∙ scale invariance
∙ rotation invariance
∙ shift invariance
∙ contrast invariance

(a) Distribution of the gradient
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(b) Average 1-D power spectrum
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Case study: Training FFDNet with dead leaves images

FFDNet: a lightweight image denoising CNN [Zhang et al., 2018].
Architecture.

Experimental Protocol, presented in [Achddou et al., 2021] *

▶ Generate 10k DL images of size (500, 500, 3) / specific configuration as GT,
▶ Train FFDNet for color image denoising for each dataset
▶ Test the models on natural image benchmarks (CBSD68, Kodak24, McMaster).

*Synthetic Images as a Regularity Prior for Image Restoration Neural Networks, SSVM 2021

16/85



Training with natural images

Database: 5000 images de from the Waterloo
Exploration Database.

PSNR: 31.54 dB
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Training with dead leaves images with a fixed radius

Database: a non gaussian random process of dead
leaves images with a fixed radius.

PSNR: 30.1 dB (-1.4)
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Training with dead leaves images with random radii

Database:
▶ DL images with scaling properties (power law of radii

with 𝛼 = 3 ,𝑟min = 1, 𝑟max = 2000)
▶ Colors uniformly drawn in the RGB cube.

PSNR: 29.6 dB (-1.8)
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Training with DL images with natural colors

▶ DL images with scaling properties (power law of radii
with 𝛼 = 3,𝑟min = 1, 𝑟max = 2000)

▶ Colors drawn from natural images histograms

PSNR: 30.61 dB (-0.9)
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Training with DL images 𝑟𝑚𝑖𝑛 = 16

▶ DL images with scaling properties (power law of radii
with 𝛼 = 3,𝑟min = 16, 𝑟max = 2000)

▶ Colors drawn from natural images histograms

PSNR: 30.55 dB (-1)
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Training with a mix of DL images with 𝑟𝑚𝑖𝑛 ∈ {1, 16}

Database: A mix of DL images with
𝛼 = 3, 𝑟𝑚𝑖𝑛 ∈ {1, 16}, 𝑟𝑚𝑎𝑥 = 2000.

PSNR: 30.94 dB (-0.6)
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Take-away Messages

Take-away Messages

→ Better understanding of required image proper-
ties for NN training:

▶ Non-gaussianity of the image model
(occlusions/Clear edges)

▶ Scale invariance property

▶ Color distribution close to natural images

▶ Diversity of the training database

Limitations

▶ oversimplistic geometry

▶ textures only arise from very small leaves /
otherwise homogeneous areas

▶ no depth modeling except for occlusions

▶ a substantial performance gap with training on
real images

Figure: Comparison of denoising results: natural vs Dead leaves training of DRUNet
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the vibrant leaves model



The Vibrant Leaves model

Differences between the two models

Properties Natural Scaling Depth Complex Repetitive
Colors properties modelling Geometry Textures

Dead Leaves model 3 3 ∼ 7 7

VibrantLeaves model 3 3 3 3 3
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Geometry: Natural objects vs Dead Leaves model

Figure: Segments of single objects
from Pascal-VOC

Figure: Geometry of Dead Leaves
objects

Observations

▶ Natural objects: straight lines, acute angles, varying curvatures, concave parts, holes …

▶ Dead leaves objects: disks! only convex shapes with constant curvature
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VibrantLeaves random shape generator

Figure: random points

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Delaunay triangles

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Concave Hull 𝛼 = 0.8

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Concave Hull 𝛼 = 0.5

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Concave Hull 𝛼 = 0.3

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Concave Hull 𝛼 = 0.1

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Original shape

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Smoothened shape

Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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VibrantLeaves random shape generator

Figure: Binarized shape

Shape Generation algorithm
1. Sample 𝑁 points uniformly in a disk 𝐷 of radius 𝑅
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than 𝑅.𝛼, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes
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Natural vs VibrantLeaves objects

Figure: Segments of single objects from Pascal-VOC Figure: Objects from the VibrantLeaves shape generator
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Textures modeling

What is a texture?

No clear definition of a texture: a pat-
tern that repeats itself with slight modi-
fications at various scales. ∼ 2 types of
textures

▶ pseudo-periodic textures

▶ micro-textures ∼ random noise

Texture synthesis: a widely research topic, but most methods are exemplar-based.
Goal:Propose an exemplar-free texture generator, based on principles of randomness and repetitions.
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Textures modeling: Pseudo-Periodic Patterns

Pseudo-Periodic Pattern Generator

A model that creates pseudo-periodic interpolation maps 𝑇 between two colors, with increasing com-
plexity.

1. 𝑇1(𝑥, 𝜔) = sin(𝜔𝑥) a 1 or 2D sinusoidal map of random period,

2. 𝑇2(𝑥, 𝜔) = sigmoid(sin(𝜔𝑥), 𝛼), sharper transitions with a logit funtion

3. 𝑇3(𝑥) = stack({𝑇2(𝜔𝑖)}𝑖<𝑛)(𝑥) a random oscillatory field

4. 𝑇4(𝑥) = warp(𝑇3(𝑥)), a displacement map obtained by filtering noise maps.

𝑇2 : Sinusoidal textures 𝑇3 : Random periods 𝑇4 : Warped textures
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A model that creates pseudo-periodic interpolation maps 𝑇 between two colors, with increasing com-
plexity.
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Textures modeling: Micro-textures

Common prior of natural images: |F(𝑥, 𝜈)| ≃ 𝐶
𝜈𝛼 with 𝛼 ∈ [2 − 𝜖, 2 + 𝜖].

Micro-texture generator

Inspired by the phase randomization texture model of [Galerne et al., 2010]:

1. Generate a white noise sample with a natural color histogram:

2. Fix the power spectrum to a power function (isotropic)

3. Reconstruct the image by inverse Fourier transform

𝛼 = 0.5 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0 𝛼 = 2.5
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depth



Modeling depth and the acquisition process

Depth in natural images

▶ Perspective: a non-linear mapping of 3D to 2D →
vanishing points and parralel ines

▶ Depth-of-field: local, non-uniform blur based on object
depth

▶ Occlusions: Objects occlude each other in the scene

Depth in the DL model

▶ only occlusions

▶ limitted model for physical depth

VL additions: A depth-of-filed simulator and a perspective model for texture maps
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Modeling depth: Depth-of-field

Depth-of-field approximation: a tri-plane division of space: blurred background / focused middle ground /
blurred foreground

Figure: Diagram of the depth-of-field algorithm. After generating three DL stack (background, middle-ground and foreground),
we fuse them by applying blur kernels 𝐺𝜎1 , 𝐺𝜎2 respectively to the background and foreground.
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VibrantLeaves: Examples of images

Figure: Examples of samples from the VibrantLeaves model, which integrates modeling for geometry, textures, and depth.
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VibrantLeaves: Examples of images

Figure: Examples of samples from the VibrantLeaves model, which integrates modeling for geometry, textures, and depth.
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VibrantLeaves: Statistical Properties

Figure: Right. Distribution of the gradient, Left. Average 1D power spectrum, for Natural images, DL images, VL images
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Vibrant Leaves: FID scores

FID score: a similarity measure at the last hidden layer of a classification NN (InceptionV3). Lower is better /
Computed with respect to the traditional training dataset (WaterlooDB).

Metric FID ↓ KL-Gradient↓ 𝛼Spectrum (𝑅2)
(Nat = 1.43)

DL [Achddou et al., 2021] 318 0.286 1.73 (0.992)
CleVR [Johnson et al., 2017] 217 0.517 1.67 (0.992)

FractalDB [Kataoka et al., 2020] 342 1.91 0.51 (0.584)
DL-textured [Baradad et al., 2021] 312 0.228 0.99 (0.98)

VL 193 0.006 1.41 (0.995)
GTA-5 [Richter et al., 2016] 186 0.015 1.49 (0.982)
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image restoration results



Image denoising results

Protocol:
▶ generate 10K images for every configuration
▶ train a DRUNet denoiser on these individual

datasets
▶ test on natural image datasets

Kodak24 CBSD68 McMaster Urban100 Bokeh Average

Method / 𝜎 25 50 25 50 25 50 25 50 25 50 25 50

Input PSNR 20.43 14.86 20.53 15.01 20.91 15.38 20.63 15.11 20.46 14.95 20.59 15.06

DRUNet Fractal [Kataoka et al., 2020] 17.32 17.06 17.05 16.66 15.57 15.19 16.20 15.93 19.49 18.47 17.13 16.66
DRUNet ClevR [Johnson et al., 2017] 30.42 27.71 29.45 26.64 30.98 28.15 29.43 26.05 37.13 33.91 31.48 28.49
DRUNet DL [Achddou et al., 2021] 30.95 28.09 30.20 27.18 31.25 28.32 29.43 26.05 36.66 33.76 31.69 28.68
DRUNet DLText [Baradad et al., 2021] 31.14 28.11 30.35 27.18 31.33 28.31 29.26 25.81 37.19 33.90 31.85 28.66
DRUNet GTAV [Richter et al., 2016] 32.14 29.20 31.14 28.06 32.43 29.47 31.17 27.90 38.59 35.71 33.09 30.07
DRUNet VL 32.16 29.16 31.21 28.06 32.63 29.59 31.27 27.94 38.70 35.78 33.19 30.11
DRUNet Nat 32.89 29.86 31.69 28.51 33.14 30.08 32.60 29.60 39.21 36.31 33.91 30.86

Table: Image denoising results. Best results are in bold and second results are underlined.
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Image denoising examples

Ground Truth Noisy DRUNet DL DRUNet VL DRUNet Natural

Figure: Denoising visual results. We compare the same DRUNet architecture trained either on Dead Leaves, Vibrant Leaves or
Nat images.
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Image denoising examples

Ground Truth Noisy DRUNet DL DRUNet VL DRUNet Natural

Figure: Denoising visual results. We compare the same DRUNet architecture trained either on Dead Leaves, Vibrant Leaves or
Nat images.
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benefits of the vl model



What are the benefits?

Questions

1. Does the learned denoiser inherit invariance properties?

2. Does our image model lead to faster training convergence?

3. Can we isolate image properties that are crucial for image restoration NNs?

4. Can we verify that the network has learnt these principles?
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I: Invariances Properties

Dead leaves images are supposed to have many invariances:

▶ Rotation

??

▶ Scale

??

▶ Contrast ▶ Shift

Is our learnt denoiser invariant to these? or better than the natural baseline…

Testing protocol

▶ Test both models at a fixed 𝜎 = 25, while varying the distortion level 𝜃.
▶ Measure the performance difference Δmodel(𝜃) induced by the distortion.
▶ Report 𝜉(𝜃) = ΔVL(𝜃) − ΔNat(𝜃) → if 𝜉 > 0, the denoiser is more resilient to the distortion.
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Ia: Rotation Invariance

0 20 40 60 80
Angle in degrees

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

PS
NR

 g
ap

Figure: Performance gap for rotation invariance
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Ib: Scaling Invariance
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Figure: Performance gap for scale invariance
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IV: Prior Sampling

Goal: Visualize the prior ̃𝑝VibrantLeaves learned by the denoising network.

▶ Turn denoisers into generators! Diffusion
models are denoisers!

▶ For a denoiser trained on any 𝑝𝑑, use
score-based algorithms to sample from
the implicitly learnt prior ̃𝑝𝑑 [Kadkhodaie
and Simoncelli, 2021, Leclaire et al., 2025]

▶ Not Ideal: Classic denoisers are not
trained on all noise levels.

Background on diffusion models

▶ 𝑝𝑠𝑜𝑢𝑟𝑐𝑒 ∼ N(0, Id), 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 ∼ pdata
▶ Forward Process: 𝑝𝑡 = 𝑝𝑡−1 ∗ N(0, 𝜎𝑡.Id), such that

𝑝0 = pdata and 𝑝𝑇 ≃ 𝑝𝑠𝑜𝑢𝑟𝑐𝑒

▶ Backward process: 𝑥𝑇 ∼ 𝑝𝑠𝑜𝑢𝑟𝑐𝑒 iteratively denoise
the image with a denoiser 𝐷𝜃 such that 𝑥0 ∼ pdata
(with noise injection)

▶ Tweedie equality: 𝐷𝜃(𝑦, 𝜎) − 𝑦 = 𝜎2∇ log 𝑝(𝑦) →
an iterative deblurring of the noisy distribution.
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IV: Prior Sampling DRUNet Natural

Figure: Images sampled from the prior learnt by a DRUNet denoiser trained on Natural Images.
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IV: Prior Sampling DRUNet Dead Leaves

Figure: Images sampled from the prior learnt by a DRUNet denoiser trained on basic Dead Leaves images.
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IV: Prior Sampling DRUNet Vibrant Leaves

Figure: Images sampled from the prior learnt by a DRUNet denoiser trained on Vibrant Leaves.

Learnt properties from Vibrant Leaves images:
3̋ occlusions,
3̋ complex shapes,
3̋micro-textures and pseudo-periodic textures,
3̋ depth-of-field
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Overview

VibrantLeaves Pseudo-code

define leavesStack(r_min,r_max, ,N):
  img = zeros(h,w,3)
  for (i= 0, i<N, i++):
    r = rdm.power(r_min,r_max, )
    shape = shapeGenerator(r)
    texture = textureGenerator()
    render_shape = shape*texture
    img=stack(render_shape,img)
Return img

sb,sm,sf = (leavesStack(...,  ))
final_img = depthFuse(sb,sm,sf)

Curved model

Base model

shapeGenerator() textureGenerator()

Micro-Texture model

Pseudo-Periodic model
depthFuse()

Fo
re

gr
ou

nd
B

ac
k

gr
ou

nd
M

id
dl

e
gr

ou
nd

▶ comparable image denoising restoration with training on p̂data
▶ a model based only on geometry and textures
▶ robustness to some distortions
▶ a more interpretable model (prior sampling / ablation studies)
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Part II : 𝑝noise 2-Shots in the Dark
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real-world image denoising



Noise Examples

Real-world RAW noise is far from Gaussian! 𝑝noise ≠ N(0, 𝜎2Id)
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Noise sources

Figure: Photon acquisition with a
CMOS sensor

Noise Sources during Image Acquisition:

Signal-dependent Noises:
▶ Photon shot noise
▶ Photon response Non

Uniformity (PRNU)

Signal-independent Noises:
▶ Read-out noise
▶ Quantization noise
▶ Banding pattern noise
▶ Fixed Pattern Noise (FPN)
▶ …

𝑌 = 𝑁shot(𝑋, ISO) + 𝑁independent(ISO) (6)
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Standard Strategy

Training on real paired datasets:
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Standard Strategy

Training on real paired datasets:

Dataset Acquisition:

▶ Camera mounted on a tripod → ∼ no movement and alignement
▶ Only static scenes
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Standard Strategy

Training on real paired datasets:

Limitations:

▶ Cumbersome: time consuming
▶ Limited diversity: limited number of samples + only static scenes in controlled environments
▶ Not Generalizable: camera specific datasets.
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Alternative: Synthetic paired data

Original training set: 𝐷 = {𝑥𝑖, 𝑦𝑖}𝑖≤𝑁𝑝𝑎𝑖𝑟𝑠
∪ {𝑧𝑗}𝑗≤𝑁𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

Alternative: Synthetize noisy data with a realistic noise model!

Advantages

▶ arbitrary amounts of noisy samples

▶ Not limited to scenes 𝑥𝑖 from 𝐷

▶ less labor intensive

Problem statement:

Given a subset 𝐴 ⊆ 𝐷, fit the parameters of a 𝐺𝜃
such that:

𝜃⋆ = arg min
𝜃∈Θ

𝐷( ̂𝑝noise|𝑝𝐺𝜃
) (7)
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Related Works

Simple parametric models:
▶ Gaussian: 𝑛 ∼ N(0, 𝜎2)
▶ Poisson-Gaussian: 𝑦 ∼ N(𝑥, 𝜆𝑥2 + 𝜎2)
▶ ELD [Wei et al., 2021]:

𝑌 = 𝑋
𝛾 + 𝑁𝑠 ( 𝑋

𝛾 ) + 𝑁𝑟 + 𝑁𝑏 + 𝑁𝑞,

▶ few parameters → interpretable
▶ estimation prone to inaccuracies
▶ Not very precise modeling
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Related Works

Deep Generative models:
▶ Normalizing Flows: NoiseFlow [Abdelhamed

et al., 2019]
▶ GANs: LRD [Zhang et al., 2023]
▶ Diffusion Models: NoiseDiff [Lu et al., 2025]

▶ Not always expressive enough (NF)
▶ Good noise modeling performance for DM
▶ Requires large amounts of data
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Our setting

Calibration data: {𝑧𝑖}𝑖≤𝑁𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

▶ Noisy images
▶ Dark Frames: images obtained in complete darkness at specific settings

Method Category # of real pairs # of dark frames
(per ISO)

LRD Learning 1865 400
NoiseDiff Learning 1865 400
PMN Non-learning 1865 400
ELD Non-learning 0 Several

Poisson-Gaussian Non-learning 0 0

Method Category # of real pairs # of dark frames
(per ISO)

LRD Learning 1865 400
NoiseDiff Learning 1865 400
PMN Non-learning 1865 400
ELD Non-learning 0 Several

Poisson-Gaussian Non-learning 0 0
Ours Non-learning 0 1

With one Dark Frame and one noisy image per iso → find the best 𝐺𝜃
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2-shots in the dark: method



Overview

▶ Noisy image → shot noise estimation
▶ Dark frame → all signal independent noise sources
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Our initial model inspired by texture synthesis

Our methods is largely inspired by Random Phase Textures (RPN) → a texture synthesis model for stationary
micro-textures
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Denoising Results

Testing our model: synthetize noise / add it to real images / Train a denoising Unet with this data

Figure: Denoising Results from a network trained on synthetic noise

Problems: Banding pattern noise artifacts

66/85



Denoising Results

Testing our model: synthetize noise / add it to real images / Train a denoising Unet with this data

Figure: Denoising Results from a network trained on synthetic noise

Problems: Banding pattern noise artifacts

66/85



Adding inter-channel correlations

Cause: No modeling of inter-channel correlations of noise
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Adding inter-channel correlations

Cause: No modeling of inter-channel correlations of noise
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Denoising Results

Figure: Denoising Results from a network trained on synthetic noise
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Histogram misalignment

RPN normalizes the noise histograms! → Color artifacts in denoising models
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Histogram matching

Repeat (Histogram matching / Power spectrum prescription) 𝐾 times
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Histogram matching

Repeat (Histogram matching / Power spectrum prescription) 𝐾 times
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Denoising Results

No more color bleeding!

Figure: Denoising Results from a network trained on synthetic noise
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Denoising Results

Better restoration of malfunctionning saturated pixels!

Figure: Denoising Results from a network trained on synthetic noise
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Method Summary
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experimental results



Numerical Results

Figure: Denoising results on different benchmarks for low light denoising I

Figure: Denoising results on different benchmarks for low light denoising II
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Visual Results

Noisy Clean Real Pairs Poisson Gaussian

ELD LRD DarkDiff Ours
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Visual Results

Noisy Clean Real Pairs Poisson Gaussian

ELD LRD DarkDiff Ours
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Overview

▶ minimal data requirements for model calibration
▶ no parametric estimation for signal dependent noise → less prone to errors
▶ SOTA image denoising results for low-light images across multiple sensors
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Part III: Conclusion
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2 sides of the same coin

Vibrant Leaves

̂pdata → pVibrantLeaves
▶ A new model based on simple image

properties
▶ Comparable image restoration

performance with training on natural
images

▶ A more interpretable model (prior
visualization / model ablations)

Perspective:
▶ make the model differentiable → optimal

parameters
▶ adapt for scientific computational imaging
▶ use 𝑝VibrantLeaves as a 𝑝0 for Flow Matching

models

part II

N(0, 𝜎2) → 2 Shots in the Dark

A novel camera noise generator!
▶ a frugal, fast and easily portable methods

for accurate noise synthesis
▶ no parametric estimation for signal

independent noise
▶ state of the art denoising results

Perspective:
▶ account for additional noise factors

(exposure time, sensor heat …)
▶ deploy on other sensors in computational

imaging (SPADs, CT scanners …)
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Collaborators and related publications

▶ Prof. Yann Gousseau (Télécom Paris, LTCI)
▶ Prof. Saïd Ladjal (Télécom Paris, LTCI)

▶ Liying Lu, PHD student (EPFL, IVRL)
▶ Prof. Sabine Süsstrunk (EPFL, IVRL)

Publications related to this talk:

▶ VibrantLeaves: A principled parametric image generator for training deep restoration models, preprint 2025,
RA, Y.Gousseau, S.Ladjal, S.Süsstrunk

▶ 2-Shots in the Dark: Low-Light Denoising with Minimal Data Acquisition preprint 2025, Liying Lu, RA,
S.Süsstrunk
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