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DEEP IMAGE DENOISING



Noise in Imaging

In all imaging fields, images are cor-
rupted with noise:

Y=1T+n, N~ Pnoise (1)
P y: the noisy observation
» a: the ground truth
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Noise in Imaging

In all imaging fields, images are cor-
rupted with noise:

Y =T +n, N~ Pnoise (1)
P y: the noisy observation Figure: Speckle Noise in SAR imaging
» a: the ground truth

Figure: CT scan with low dose
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Noise in Imaging

In all imaging fields, images are cor-
rupted with noise:

Y =T +n, N~ Ppoise (1)
P y: the noisy observation
» a: the ground truth

Figure: Camera noise in low-light

Figure: CT scan with low dose



Image Denoising

For all these cases: difficult / impossible acquisition of noiseless images
= Develop denoising algorithms!

Given any observation y = @ 4+ n, n ~ pPyeise, Where & ~ pyai,, find an estimate z(y) as close as possible
to .




Image Denoising

For all these cases: difficult / impossible acquisition of noiseless images
= Develop denoising algorithms!

Given any observation y = @ 4+ n, n ~ pPyeise, Where & ~ pyai,, find an estimate z(y) as close as possible
to .

Characterization. The Mean Squared Error:

MSE(f) =B lle— (= +n)li3 (2)

Z~Pdata

Optimal Estimator. The Minimal Mean Squared Error estimator:
Farsely) = argmin, (B, (1) —2l?) | = E(ely). 3)

What about deep denoisers?



Deep Image Denoisers

Deep Learning setting

Optimization problem

Ierél(gl 1Ex'\“f)data1”"’13’n0ise | |$ + f@ (‘r + n) | |§ (4)

Solved with a variant of the SGD. fy. # fuarsr because of some approximations.




Deep Image Denoisers

Deep Learning setting

Optimization problem

Iz + fo(z +n)ll3 (4)

min [E
(USC]

Solved with a variant of the SGD. fy. # fuarsr because of some approximations.

T~Pdatas""~Pnoise

The architecture. A restricted space of
possible solutions:

Noise Level Map
Noisy Image "

Skip Connection

F={f,l0 €0} (5)

4 Residual Blocks
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Figure: DRUNet architecture [Zhang et al., 2021]



Deep Image Denoisers

Deep Learning setting

Optimization problem

Iz + fo(z +n)ll3 (4)

Igrél(gl 1Ex"“lﬁ'data ;N~DPnoise

Solved with a variant of the SGD. fy. # fuarsr because of some approximations.

The dataset. A discrete approximation
of Pyatar given a dataset D:

A 1
Pdata = N 26117 {ziticn=D (5)
i=1
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Deep Image Denoisers

Deep Learning setting

Optimization problem

Iz + fo(z +n)ll3 (4)

minlE__ 5
9cO  ¥"Pdata;"™~Pnoise

Solved with a variant of the SGD. fy. # fuarsr because of some approximations.

The noise. A Gaussian approximation of
noise
Dnoise = N(0, led) (5)

P easy sampling
P iid hypothesis

Figure: x ~ f)datav nn~ f’noisev y=x+n 4/85



Deep Image Denoisers

Nonetheless! Extremely good performance of modern deep

denoisers.
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Figure: Evolution of Denoising performances over time

Figure: Image denoising
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These approximations = some limitations for deep denoisers.



These approximations = some limitations for deep denoisers.

Ddata + Pdata

P datasets are finite

P datasets are therefore imbalanced
— biases in the learnt denoisers

P> Privacy / safety: real images contain
sensitive information




These approximations = some limitations for deep denoisers.

,

Ddata 7 Pdata Proise 7 Pnoise
P datasets are finite P real noise is much more complex than
p datasets are therefore imbalanced Gaussian noise
— biases in the learnt denoisers P notiid, signal dependent, correlated.
P> Privacy / safety: real images contain » — sub-optimal performance on
sensitive information real-world scenarii
. . v

Other related issues: Surface-level explainability, unpredictible hallucinations, lack of generalization.



A common strategy: Synthetic Learning

Training machine learning models on artificially generated data rather than real-world data.
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P sampling arbitrary amounts

P abstract images — no semantic/sensitive
information

P property factorization — explainability




A common strategy: Synthetic Learning

Training machine learning models on artificially generated data rather than real-world data.

Ddata — PvibrantLeaves

Vibrant Leaves: a new statistical image
model replicating key image properties

P sampling arbitrary amounts

P abstract images — no semantic/sensitive
information

P property factorization — explainability

part Il

N(0,0?) — 2 Shots in the Dark

a novel camera noise generator
P very little calibration data required

P> accurate modeling of noise correlations
and statistical properties

p — SOTA performance on real-world
low-light denoising benchmarks




Part|: Repladng ﬁdata Wlth PvibrantLeaves



THE DEAD LEAVES MODEL: BASIC CONCEPT



The Dead Leaves Model: Basic concept

A random superimposition of shapes of random size, color, and positions.




The Dead Leaves Model: Mathematical formulation

the dead leaves model

a random process (z;,t;, X;)ien

» z;,t; ~P=%d, ., aPoisson point process on R? x (—o0,0]

» X, random sets of IR?; usually the set of disks of radius r; ~ p(r)




The Dead Leaves Model: Mathematical formulation

the dead leaves model

a random process (z;,t;, X;)ien

» z;,t; ~P=%d, ., aPoisson point process on R? x (—o0,0]

» X, random sets of IR?; usually the set of disks of radius r; ~ p(r)

Useful definitions:

P A leaf: the set of positions z; + X

P> The visible part: the positions of a leaf which are not covered by previous leaves:
V; = (z; + X))\ UtjE(th)(Ij +X;)

P dead leaves tesselation: T =, V;

P> the dead leaves image: the result of coloring the visible parts with ¢; ~ ¢(c)



Examples |

P 7~ const

Properties

artificial colors, constant shape size
— not very natural.

Figure: Process sample
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Examples Il

P r ~ const » ¢ ~ color_histo(I), I: natural image

Properties

colors sampled from a real image’s his-
togram

— same color distribution
over-simplistic geometry.

Figure: Process sample
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Examples Il

P r~p(r)=Cr 2 usually a =3 » ¢ ~ color_histo(I), I: natural image

Properties

natural colors + and power law distribu-
tion of the radius. Special case:
« = 3 — scale invariance property.

Figure: Process sample
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Advantages of the Dead Leaves Model

P few parameters /good compromise between
complexity and fidelity

P "natural” statistical properties.
P direct control over contrast, colors.
» direct control over invariance properties:

- scale invariance

- rotation invariance
- shift invariance

- contrast invariance

log (probability)

o T 2 3 o
derivative derivative
(@ b

(a) Distribution of the gradient

digital requency

(b) Average 1-D power spectrum
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Case study: Training FFDNet with dead leaves images

FFDNet: a lightweight image denoising CNN [zhang et al, 2018].
Architecture.

p} =i
K] T
2| |2 &
A
= o
2l |+ +
<]
S| |2 2
S S
o (]

Experimental Protocol, presented in [achddou et al, 2021] ©

P Generate 10k DL images of size (500, 500, 3) / specific configuration as GT,
P Train FFDNet for color image denoising for each dataset
P Test the models on natural image benchmarks (CBSD68, Kodak24, McMaster).

*Synthet\'c Images as a Regularity Prior for Image Restoration Neural Networks, SSVM 2021
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Training with natural images




Training with dead leaves images with a fixed radius
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Training with dead leaves images with random radii




Training with DL images with natural colors




Training with DL images r,,;,, = 16




Training with a mix of DL images wit




Take-away Messages

— Better understanding of required image proper-
ties for NN training:

» Non-gaussianity of the image model
(occlusions/Clear edges)

P Scale invariance property

» Color distribution close to natural images

P Diversity of the training database
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— Better understanding of required image proper- » oversimplistic geometry
ties for NN training:

o ) P textures only arise from very small leaves /
» Non-gaussianity of the image model otherwise homogeneous areas

(occlusions/Clear edges) ) )
» no depth modeling except for occlusions

P Scale invariance propert
property P a substantial performance gap with training on

» Color distribution close to natural images real images

P Diversity of the training database




Take-away Messages

— Better understanding of required image proper- » oversimplistic geometry
ties for NN training: >

o ) textures only arise from very small leaves /
P Non-gaussianity of the image model otherwise homogeneous areas

(occlusions/Clear edges) ) )
» no depth modeling except for occlusions

P Scale invariance propert
Propery » asubstantial performance gap with training on

» Color distribution close to natural images real images

» Diversity of the training database

-- TR
B o .mn::m::ﬁﬂhwh ¥

Figure: Comparison of denoising results: natural vs Dead leaves training of DRUNet 23/85



THE VIBRANT LEAVES MODEL



The Vibrant Leaves model

Differences between the two models

Natural Scaling  Depth  Complex Repetitive

Pi ti h .
roperties Colors properties modelling Geometry Textures
Dead Leaves model| v v ~ X X
VibrantLeaves model| v v v v v
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GEOMETRY



Geometry: Natural objects vs Dead Leaves model

Figure: Segments of single objects
from Pascal-vVOC



Geometry: Natural objects vs Dead Leaves model

Figure: Segments of single objects Figure: Geometry of Dead Leaves
from Pascal-VOC objects

Observations

P Dead leaves objects: disks! only convex shapes with constant curvature




VibrantLeaves random shape generator

Shape Generation algorithm

.o 'y o ® 1. Sample N points uniformly in a disk D of radius R
o © O @ . . . . .
° ..‘ . ° :’o (maintain rotation invariance)
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Figure: random points
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VibrantLeaves random shape generator

Shape Generation algorithm
1. Sample N points uniformly in a disk D of radius R

SRR

'A‘"ﬁ (maintain rotation invariance)
‘ ‘g‘) /> 2. Compute Delaunay triangulation of the points
e:ngmw..\vfg
NS 0
é'/

Figure: Delaunay triangles



VibrantLeaves random shape generator

Shape Generation algorithm

1. Sample N points uniformly in a disk D of radius R
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than R.a, without breaking connectivity

Figure: Concave Hull @ = 0.8



VibrantLeaves random shape generator

Shape Generation algorithm

1. Sample N points uniformly in a disk D of radius R
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than R.a, without breaking connectivity

Figure: Concave Hull @ = 0.5



VibrantLeaves random shape generator

Shape Generation algorithm

1. Sample N points uniformly in a disk D of radius R
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than R.a, without breaking connectivity

Figure: Concave Hull a = 0.3




VibrantLeaves random shape generator

Shape Generation algorithm

1. Sample N points uniformly in a disk D of radius R
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than R.a, without breaking connectivity

Figure: Concave Hulla = 0.1



VibrantLeaves random shape generator

Figure: Original shape

Shape Generation algorithm

1.

w

Sample N points uniformly in a disk D of radius R
(maintain rotation invariance)

. Compute Delaunay triangulation of the points

. Concave Hulls: remove triangles whose circumradius is

larger than R.a, without breaking connectivity

. Curved version: Convolve with a Gaussian kernel and

threshold to obtain smooth shapes



VibrantLeaves random shape generator

Shape Generation algorithm

1. Sample N points uniformly in a disk D of radius R
(maintain rotation invariance)

2. Compute Delaunay triangulation of the points

3. Concave Hulls: remove triangles whose circumradius is
larger than R.a, without breaking connectivity

4. Curved version: Convolve with a Gaussian kernel and
threshold to obtain smooth shapes

Figure: Smoothened shape



VibrantLeaves random shape generator

Figure:

Binarized shape

Shape Generation algorithm

1.

w

Sample N points uniformly in a disk D of radius R
(maintain rotation invariance)

. Compute Delaunay triangulation of the points

. Concave Hulls: remove triangles whose circumradius is

larger than R.a, without breaking connectivity

. Curved version: Convolve with a Gaussian kernel and

threshold to obtain smooth shapes



Natural vs VibrantLeaves objects

Figure: Segments of single objects from Pascal-VOC Figure: Objects from the VibrantLeaves shape generator



TEXTURE



Textures modeling

What is a texture?

No clear definition of a texture: a pat-
tern that repeats itself with slight modi-
fications at various scales. ~ 2 types of
textures

P> pseudo-periodic textures
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Textures modeling

What is a texture?

No clear definition of a texture: a pat-
tern that repeats itself with slight modi-
fications at various scales. ~ 2 types of
textures

P> pseudo-periodic textures

P micro-textures ~ random noise

Texture synthesis: a widely research topic, but most methods are exemplar-based.
Goal:Propose an exemplar-free texture generator, based on principles of randomness and repetitions.
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Textures modeling: Pseudo-Periodic Patterns

Pseudo-Periodic Pattern Generator

A model that creates pseudo-periodic interpolation maps T between two colors, with increasing com-
plexity.
1. T} (z,w) = sin(wz) a 1 or 2D sinusoidal map of random period,

2. Ty(z,w) = sigmoid(sin(wz), ), sharper transitions with a logit funtion

: Sinusoidal textures T, : Random periods T, : Warped textures

=




Textures modeling: Pseudo-Periodic Patterns

Pseudo-Periodic Pattern Generator
A model that creates pseudo-periodic interpolation maps T between two colors, with increasing com-

plexity.
1. T} (z,w) = sin(wz) a 1 or 2D sinusoidal map of random period,
2. Ty(z,w) = sigmoid(sin(wz), ), sharper transitions with a logit funtion

3. Ts(z) = stack({Ty(w;)};<n)(x) @ random oscillatory field

: Sinusoidal textures : Random periods : Warped textures

DR .




Textures modeling: Pseudo-Periodic Patterns

Pseudo-Periodic Pattern Generator

A model that creates pseudo-periodic interpolation maps T between two colors, with increasing com-
plexity.

1. T} (z,w) = sin(wz) a 1 or 2D sinusoidal map of random period,

2. Ty(z,w) = sigmoid(sin(wz), ), sharper transitions with a logit funtion

(
3. Ts(z) = tack({TZ( i) }ien)(x) @ random oscillatory field
4. T, (x) = warp(Ts(x)), a displacement map obtained by filtering noise maps.

: Sinusoidal textures : Random periods T, : Warped textures

Z
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Textures modeling: Micro-textures

Common prior of natural images: |F(z,v)|~ < witha € [2—¢€,2+¢].
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Textures modeling: Micro-textures

Common prior of natural images: |F(z,v)|~ < witha € [2—¢€,2+¢].

Micro-texture generator

Inspired by the phase randomization texture model of [Galerne et al, 2010]:
1. Generate a white noise sample with a natural color histogram:
2. Fix the power spectrum to a power function (isotropic)

3. Reconstruct the image by inverse Fourier transform




Textures modeling: Micro-textures

Common prior of natural images: |F(z,v)|~ < witha € [2—¢€,2+¢].

Micro-texture generator

Inspired by the phase randomization texture model of [Galerne et al, 2010]:
1. Generate a white noise sample with a natural color histogram:

2. Fix the power spectrum to a power function (isotropic)

3. Reconstruct the image by inverse Fourier transform

a=0.5 a=1.0 a=1.5 a=20 a=2.5
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DEPTH



Modeling depth and the acquisition process

Depth in natural images Depth in the DL model

P Perspective: a non-linear mapping of 3D to 2D — » only occlusions

VIS (OIS 2 [parElet Ines p limitted model for physical depth

» Depth-of-field: local, non-uniform blur based on object
depth

P Occlusions: Objects occlude each other in the scene

VL additions: A depth-of-filed simulator and a perspective model for texture maps

35/85



Modeling depth: Depth-of-field

Depth-of-field approximation: a tri-plane division of space: blurred background / focused middle ground /
blurred foreground

Background

Final Fused image

Fo;eground

Figure: Diagram of the depth-of-field algorithm. After generating three DL stack (background, middle-ground and foreground),

we fuse them by applying blur kernels Goy:Goy respectively to the background and foreground.



VibrantLeaves: Examples of images

Figure: Examples of samples from the VibrantLeaves model, which integrates modeling for geometry, textures, and depth.




VibrantLeaves: Examples of images

Figure: Examples of samples from the VibrantLeaves model, which integrates modeling for geometry, textures, and depth.




VibrantLeaves: Statistical Properties
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Figure: Right. Distribution of the gradient, Left. Average 1D power spectrum, for Natural images, DL images, VL images
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Vibrant Leaves: FID scores

FID score: a similarity measure at the last hidden layer of a classification NN (InceptionV3). Lower is better /

Computed with respect to the traditional training dataset (WaterlooDB).

Qspectrum (R?)

Metric|FID | KL-Gradient
‘ b = 1.43)
DL [Achddou et al, 2021]| 318 0.286 1.73 (0.992)
CleVR [Johnson et al, 2017]| 217 0.517 1.67 (0.992)
FractalDB [Kataoka et al, 2020]| 342 191 0.51 (0.584)
DL-textured [Baradad et al,, 2021]| 312 0.228 0.99 (0.98)
VL[| 193  0.006 1.41(0.995)
GTA-5 [Richter et al,, 2016]| 186 0.015 1.49 (0.982)
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IMAGE RESTORATION RESULTS




Image denoising results

Protocol:

P> generate 10K images for every configuration

P train a DRUNet denoiser on these individual
datasets

P test on natural image datasets

o
|
=

g
<
=
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Image denoising results

Protocol:

P> generate 10K images for every configuration

P train a DRUNet denoiser on these individual
datasets

P test on natural image datasets

o
|
=

g
=
=

Kodak24 CBSD68  McMaster  Urban100 Bokeh Average
Method / o 25 50 25 50 25 50 25 50 25 50 | 25 50
Input PSNR 20.43 14.86 20.53 15.01 20.91 15.38 20.63 15.11 20.46 14.95| 20.59 15.06

DRUNet Fractal [Kataoka et al, 2020] 17.32 17.06 17.05 16.66 15.57 15.19 16.20 15.93 19.49 18.47| 17.13 16.66
DRUNet ClevR [Johnson et al, 2017] 30.42 27.71 29.45 26.64 30.98 28.15 29.43 26.05 37.13 33.91| 31.48 28.49
DRUNet DL [Achddou et al, 2021] 30.95 28.09 30.20 27.18 31.25 28.32 29.43 26.05 36.66 33.76( 31.69 28.68
DRUNet DLText [Baradad et al,, 2021] 31.14 28.11 30.35 27.18 31.33 28.31 29.26 25.81 37.19 33.90| 31.85 28.66
DRUNet GTAV [Richter et al, 2016] ~ 32.14 29.20 31.14 28.06 32.43 29.47 31.17 27.90 38.59 35.71| 33.09 30.07
DRUNet VL 32.16 29.16 31.21 28.06 32.63 29.59 31.27 27.94 38.70 35.78| 33.19 30.11

DRUNet Nat 32.89 29.86 31.69 28.51 33.14 30.08 32.60 29.60 39.21 36.31| 33.91 30.86

Table: Image denoising results. Best results are in bold and second results are underlined.
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ising examples

Figure:



Image denoising examples
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BENEFITS OF THE VL MODEL




What are the benefits?

. Does the learned denoiser inherit invariance properties?

. Does our image model lead to faster training convergence?

. Can we isolate image properties that are crucial for image restoration NNs?

. Can we verify that the network has learnt these principles?




I: Invariances Properties

Dead leaves images are supposed to have many invariances:

» Rotation » Scale » Contrast p Shift

Is our learnt denoiser invariant to these? or better than the natural baseline...
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I: Invariances Properties

Dead leaves images are supposed to have many invariances:

» Rotation ?? » Scale ?7? . Contrast | Shift

Is our learnt denoiser invariant to these? or better than the natural baseline...

Testing protocol

P Test both models at a fixed o = 25, while varying the distortion level 6.
P Measure the performance difference A,,40(€) induced by the distortion.
P Report £(0) = Ay (0) — Ay (0) — if € > 0, the denoiser is more resilient to the distortion.



la: Rotation Invariance
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Figure: Performance gap for rotation invariance
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Ib: Scaling Invariance

0.251 X

0.201 =

0.051 7

0.001 X
1.0 15 2.0 2’5 3.0 35 4.0 45
scaling factor

Figure: Performance gap for scale invariance
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IV: Prior Sampling

Goal: Visualize the prior pyiprantLeaves l€2rNed by the denoising network.

P Turn denoisers into generators! Diffusion
models are denoisers!

P> For a denoiser trained on any p,, use
score-based algorithms to sample from
the implicitly learnt prior p, [Kadkhodaie
and Simoncelli, 2021, Leclaire et al., 2025]

P Not Ideal: Classic denoisers are not
trained on all noise levels.



IV: Prior Sampling

Goal: Visualize the prior pyiprantLeaves l€2rNed by the denoising network.

Background on diffusion models
P Turn denoisers into generators! Diffusion

models are denoisers! P Psource ~ N(01d), Prarges ~ Paata

) ) P Forward Process: p, = N(0, o,.1d), such that
» For a denoiser trained on any p,, use Py = Pey *N(0, 0.10)

) Py = and pp =~
score-based algorithms to sample from Po = Pdata S1E P Psource - ‘
the implicitly learnt prior 5, [Kadkhodaie > Backward process: 7~ pourc. iteratively denoise
and Simoncelli, 2021, Leclaire et al,, 2025] the image with a denoiser D such that 2 ~ Pyata

. ) with noise injection
P Not Ideal: Classic denoisers are not ( J )

trained on all noise levels. P Tweedie equality: Dy(y,0) —y = o>V logp(y) —
an iterative deblurring of the noisy distribution.




IV: Prior Samplin et Natural

Figure: Images sampled from the prior learnt by a DRUNet denoiser trained on Natural Images.
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et Dead Leaves

Figure: Images sampled from the prior learnt by a DRUNet denoiser trained on basic Dead Leaves images.
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IV: Prior Sampling DRUNet Vibrant

Figure: Images sampled from the prior learnt by a DRUNet denoiser trained on Vibrant Leaves.

Learnt properties from Vibrant Leaves images:
4 occlusions,

e/complex shapes,

¥ micro-textures and pseudo-periodic textures,
4 depth-of-field
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Overview

********************* ~ shapeGenerator () textureGenerator () depthFuse ()

Pseudo-Periodic model

|

img = zeros(h,w,3) !
for (i= 0, i<N, i++): :
r = rdm.power (r_min,r_max,a) :
shape = shapeGenerator (r) l
texture = textureGenerator () i
render_shape = shape¥texture [
I

I

I

I

l

I

|

I

|

I

Triangles(e;)

ConcaveHull(T, a + r)

Micro-Texture model
img=stack (render_shape, img)

Return img

a=01 I(v) = N(v) ® |[v|*, N ~ U(colorHist(I))

a=1
Curved model

sb,sm,sf = (leavesStack(...,N)))
final_img = depthFuse(sb,sm,sf)

i<3

n

,,,,,,,,,,,,,,,,,,,,,, s Sy = B(S,0) Sc =7(55,05) =05 ¥=25




Overview

img = zeros(h,w,?x)

for (i= 0, i<N, i++):
r = rdm.power (r_min,r_max,a)
shape = shapeGenerator (r)
texture = textureGenerator ()
render_shape = shape¥texture
img=stack (render_shape, img)

Return img

sb,sm,sf = (leavesStack(...,N))),
final_img = depthFuse(sb,sm,sf)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| <3
|

|

|

depthFuse ()

textureGenerator ()
Pseudo-Periodic model

T Ty

i ~U(C,) Triangles(z,)

Base model ConeaveHull(T,a +

r)
= 0
o ) A
@f’ ¢  Micro-Texture model
T i) =Nw) o v U(colorHist(1))
2 . u 1
s S=B(S0)  S.=7(505) =05

P comparable image denoising restoration with training on Pyata

P a model based only on geometry and textures

P robustness to some distortions

P a more interpretable model (prior sampling / ablation studies)
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Part I : p,oise 2-Shots in the Dark



REAL-WORLD IMAGE DENOISING




Denoised result




Noise Examples

Denoised result

Real-world RAW noise is far from Gaussian! p,,i. # N(0, o%Id)



Noise sources

Noise Sources during Image Acquisition:

Light
(photon)
Signal-dependent Noises: Signal-independent Noises:
l » Photon shot noise P Read-out noise
P Photon response Non » Quantization noise
Uniformity (PRNU) P Banding pattern noise
P Fixed Pattern Noise (FPN)
> .
Y = Nshot(X: lSO) + Nindependent“SO) (6)

Figure: Photon acquisition with a
CMOS sensor



Standard Strategy

Training on real paired datasets:

] []
|EEEE\

Clean images Real noisy images Denoising network
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Standard Strategy

Training on real paired datasets:

Dataset Acquisition:

P Camera mounted on a tripod — ~ no

P Only static scenes

Real noisy images

movement and alignement

Denoising network
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Standard Strategy

Training on real paired datasets:

HEan
el
[

HEgN

Clean images Real noisy images Denoising network

Limitations:

P Cumbersome: time consuming
P Limited diversity: limited number of samples + only static scenes in controlled environments
P> Not Generalizable: camera specific datasets.
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Alternative: Synthetic paired data

Original training set: D = {””ivyi}iéanm U{z}jen

calibration



Alternative: Synthetic paired data

Original training set: D = {1'i7yi}ingnm U2 <Nt

Alternative: Synthetize noisy data with a realistic noise model!



Alternative: Synthetic paired data

Original training set: D = {z;,y; };<n

pairs

U {Zj}jgN

Alternative: Synthetize noisy data with a realistic noise model!

calibration

Advantages

P arbitrary amounts of noisy samples
P Not limited to scenes z; from D

P less labor intensive




Alternative: Synthetic paired data

Original training set: D = {zi,0itien, ... Uizitien

calibration

Alternative: Synthetize noisy data with a realistic noise model!

Advantages

Problem statement:

P arbitrary amounts of noisy samples

Given a subset A C D, fit the parameters of a Gy

. such that:
P Not limited to scenes z; from D

» less labor intensive 9" = argmin D(PngiselPc,) @)




FEEWE RS

Physics-based (Poisson, Gaussian ...)

Clean images Synthetic noisy images

Simple parametric models:

P Gaussian: n ~ N(0,0?)

P Poisson-Gaussian: y ~ N(z, Az? + o?)
P ELD [Wei et al, 2021]:

Y =24 N, (£)+N,+N,+N,

P few parameters — interpretable
P estimation prone to inaccuracies

» Not very precise modeling
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FEEWE RS

Synthetic noisy images

Clean images

Networks (GAN, Normalizing flow...)

Deep Generative models: .

o ) P Not always expressive enough (NF)

» Normalizing Flows: NoiseFlow [Abdelhamed
et al,, 2019]

P GANs: LRD [Zhang et al., 2023]
P Diffusion Models: NoiseDiff [Lu et al., 2025]

P Good noise modeling performance for DM

P Requires large amounts of data
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Our setting

Calibration data: {z;};-

calibration
P Noisy images
P Dark Frames: images obtained in complete darkness at specific settings

# of dark frames

Method Category # of real pairs (per 150)
LRD Learning 1865 400

NoiseDiff Learning 1865 400
PMN Non-learning 1865 400
ELD Non-learning 0 Several

Poisson-Gaussian Non-learning 0 0
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Our setting

Calibration data: {z;};-

calibration

P Noisy images

P Dark Frames: images obtained in complete darkness at specific settings

# of dark frames

Method Category # of real pairs (per 150)
LRD Learning 1865 400
NoiseDiff Learning 1865 400
PMN Non-learning 1865 400
ELD Non-learning 0 Several
Poisson-Gaussian Non-learning 0 0
Ours Non-learning 0 1

With one Dark Frame and one noisy image per iso — find the best Gy
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2-SHOTS IN THE DARK: METHOD




Overview

Noisy image Dark frame

» Noisy image — shot noise estimation

P Dark frame — all signal independent noise sources
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Our initial model inspired by texture synthesis

Our methods is largely inspired by Random Phase Textures (RPN) — a texture synthesis model for stationary
micro-textures

Idark
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Our initial model inspired by texture synthesis

Our methods is largely inspired by Random Phase Textures (RPN) — a texture synthesis model for stationary
micro-textures

Idark

ﬂ Blur G,
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Our initial model inspired by texture synthesis

Our methods is largely inspired by Random Phase Textures (RPN) — a texture synthesis model for stationary
micro-textures

Idark

— DFT & — IDFT — N©

I

§ ~U[-m,m]

Phase randomization
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Denoising Results




Denoising Results




Adding inter-channel correlations

Cause: No modeling of inter-channel correlations of noise

_ ~IRI—
- _,R<
Or
|

— DFT & — IDFT — N©

T

E ~ ‘U[—Tl', T[]

I dark

[] Burg, o
s

Phase randomization

&~ U([-m, n](C'H'W)) 67/85




Adding inter-channel correlations

Cause: No modeling of inter-channel correlations of noise

_ ~IRI—
- _,R<
Or
|

— DFT & — IDFT — N©

T

E ~ ‘U[—Tl', T[]

I dark

[] Burg, o
s

Phase randomization

& ~ U([—m, m]CHWD) | | &0 ~ U([-m,m]HW)), & = replicate(¢°,C)
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Denoising Results




Histogram misalignment

RPN normalizes the noise histograms! — Color artifacts in denoising models

Real

Clean / noisy

Histograms
KLD: 1.180e-02

reference
synthetic
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Histogram matching

laark

§ ~U-m,m]

Phase randomization
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Histogram matching

laark

62 ..I||||I|||I|.._

(?_’ IDFT — N© —s ﬂ}[ —N©

hist

§ ~U-m,m]

Phase randomization Histogram matching
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Histogram matching

laark

R ]
" ..I||||I|||I|.._ ;;’:;7

®— A 3 NG
IDFT »N© N _’Nrgis)c_’ pFT > N2, IDFT -y (k+1)
§ ~U[-m, 7] N

hist

Phase randomization Histogram matching Spectral correction

Repeat (Histogram matching / Power spectrum prescription) K times
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Denoising Results




Denoising Results

1’. ~f. llif




Method Summary

Synthesis

Estimate g

—  g*PUciean/9) — @ ‘_

|

Ve
%oz,
5
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EXPERIMENTAL RESULTS




Numerical Results

Dataset Ratio Real data LRD [40] NoiseDiff [29] PG ELD [38] SFRN [45] PMN [12] Ours

x100 42.95/0.958 43.16/0.958 43.92/0.961 41.05/0.936 41.95/0.953 42.81/0.957 43.47/0.961 43.57/0.961
SID x250 40.27/0.943 40.69/0.941  41.28/0.946  36.63/0.885 39.44/0.931 40.18/0.934 41.04/0.947 41.24/0.945
x300 37.32/0.928 37.48/0.919 37.90/0.929 33.34/0.811 36.36/0.911 37.09/0.918 37.87/0.934 37.77/0.929

x100 45.52/0.977 46.16/0.983  46.95/0.978 44.28/0.936 45.45/0.975 46.38/0.979 46.99/0.984 47.13/0.986
x200 41.70/0.912 43.91/0.968 4511/0971 41.16/0.885 43.43/0.954 44.38/0.965 44.85/0.969 44.89/0.969

Figure: Denoising results on different benchmarks for low light denoising |

Ratio Real data PG ELD [38] SFRN [45] PMN [12] Ours

x64  48.80/0.991 46.98/0.988 48.26/0.990 48.18/0.990 49.32/0.992 49.47/0.992
x128 47.10/0.986 4593/0.982 46.69/0.984 46.75/0.986 47.60/0.987 47.72/0.987
x256  44.89/0.979 44.09/0.970 44.47/0.974 44.84/0.979 4541/0.981 45.50/0.979
x512  42.59/0.966 41.55/0.946 41.78/0.947 42.69/0.966 43.14/0.967 43.23/0.966
x1024  40.29/0.945 3822/0.894 38.39/0.903 40.38/0.947 40.67/0.948 40.76/0.940

x64  45.85/0.988 42.51/0.980 45.09/0.984 45.18/0.985 46.32/0.988 46.31/0.988
x128  44.52/0.982 41.78/0.972 43.63/0.974 43.83/0.977 44.90/0.983 44.76/0.980
x256  42.71/0.971 40.59/0.953 41.52/0.948 42.08/0.961 43.01/0.970 42.72/0.958

Figure: Denoising results on different benchmarks for low light denoising Il
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Visual Results
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Visual Results

ELD LRD DarkDiff Ours



Overview

CLASSIC
PIPELINE

Denoising
. £

Labor-intensive data acquisition

K

2 images per ISO Noise synthesis Denoising
NN training
|
OUR
APPROACH Ml — ..
Fast acquisition Accurate modeling

P minimal data requirements for model calibration
P no parametric estimation for signal dependent noise — less prone to errors
P> SOTA image denoising results for low-light images across multiple sensors
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Part Ill: Conclusion



2 sides of the same coin
Vibrant Leaves

Ddata — PvibrantLeaves

P A new model based on simple image
properties

P Comparable image restoration
performance with training on natural
images

» A more interpretable model (prior
visualization / model ablations)

Perspective:

P make the model differentiable — optimal
parameters

P adapt for scientific computational imaging

P> USE DyiprantLeaves @S @ Py for Flow Matching
models




2 sides of the same coin
Vibrant Leaves part Il

Ddata — PvibrantLeaves
P A new model based on simple image

N(0,0?) — 2 Shots in the Dark

properties A novel camera noise generator!

P Comparable image restoration P afrugal, fast and easily portable methods
performance with training on natural for accurate noise synthesis
images

P no parametric estimation for signal
» A more interpretable model (prior independent noise

visualization / model ablations) P state of the art denoising results

Perspective: Perspective:

P make the model differentiable — optimal
parameters

P account for additional noise factors

(exposure time, sensor heat ...)

P adapt for scientific computational imaging B deploy an other sensors in computational

P USE PyiprantLeaves S @ Po for Flow Matching imaging (SPADs, CT scanners ...)
models
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P 2-Shots in the Dark: Low-Light Denoising with Minimal Data Acquisition preprint 2025, Liying Lu, RA,
S.Susstrunk
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