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image denoising: from priors to deep learning



Image denoising

Real images are corrupted by noise. In the simplest setting:

𝑦 = 𝑥 + 𝑛, 𝑛 ∼ N(0, 𝜎2),with: (1)

▶ 𝑥: the true (unknown signal)
▶ 𝑦: the noisy observation

Goal of image denoising: find the best noiseless estimate ̂𝑥(𝑦). Which
characterization?

(a) Noiseless image 𝑥 (b) Noisy image 𝑦 (c) Denoised estimate 𝑥̂(𝑦)
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Image denoising and the Mean Square Error

Quality criterion for denoising

The most used criterion for denoising is the Mean Square Error (MSE):

MSE = E𝑥,𝑦 (|| ̂𝑥(𝑦) − 𝑥||2) (2)

Goal: find the denoiser ̂𝑥(𝑦) that minimizes the MSE.
Optimal denoiser: the Minimum Mean Square Error (MMSE)

̂𝑥𝑀𝑀𝑆𝐸(𝑦) = argmin𝑥̂E𝑥,𝑦 (|| ̂𝑥(𝑦) − 𝑥||2) = E(𝑥|𝑦) (3)

= ∫
x

𝑥.𝑝(𝑥|𝑦)𝑑𝑥 (4)

(5)

An elegant formulation, but not easily tractable.
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Bayesian formulation and MAP estimate

Another popular approach is to find an estimate that maximizes the posterior
distribution 𝑝(𝑥|𝑦) (MAP):

𝑝(𝑥|𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥)
𝑝(𝑦)

= const ∗ exp{ −||𝑥 − 𝑦||2

2𝜎2 } 𝑝(𝑥) (6)

Which gives the MAP estimate:

MAP estimate

̂𝑥𝑀𝐴𝑃 = argmax𝑥𝑝(𝑥|𝑦) = argmax𝑥exp{ −||𝑥 − 𝑦||2

2𝜎2 } 𝑝(𝑥) (7)

= argmin𝑥
||𝑥 − 𝑦||2

2𝜎2⏟⏟⏟⏟⏟
data fidelity

− log(𝑝(𝑥))⏟⏟⏟⏟⏟
prior

(8)

→ widely used formulation for optimization-based
methods.[Rudin et al., 1992, ?, Yu and Sapiro, 2011]
What are those typical priors?
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Image Prior or Regularizers

Main categories of image priors:

▶ Smoothness ▶ Sparsity ▶ Self-similarity

Figure: List of mathematical priors given in [Elad et al., 2023].
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The revolution of the deep learning era

Figure: Evolution of the performances in
PSNR of denoising methods on BSD68

Requirements of deep learning

▶ a neural network ̂𝑥𝑁𝑁 = 𝑓𝜃(𝑦)
▶ a large dataset

𝑝data → U ({𝑥𝑖, 𝑦𝑖}[1,…,𝑁])
▶ an optimization framework as a

variant of the SGD:

̂𝜃 = argmin𝜃∈ΘE𝑥,𝑦∼𝑝data
||𝑥−𝑓𝜃(𝑦)||22

Figure: A denoising network (DnCNN) [Zhang et al., 2017].
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Deep Learning for image denoising

Paradigm shift: No explicit formulation of the prior for deep denoising networks. 𝑓𝜃 : a
mapping function.

𝜌(𝑥) ∼ F(the dataset: 𝐷 × architecture: 𝜃 × loss: L) (9)

Limitations of deep denoising networks

▶ hard to interpret
▶ unexplainable hallucinations
▶ limited generalization capacities

(overfitting)
▶ limited performances when data is

scarce Figure: Hallucination effect in denoising
[Goujon et al., 2024].

Proposed alternative: Train denoising networks on images of which we control all the
properties → Synthetic Learning

7/74



synthetic learning: principles



Synthetic Learning

Definition

Synthetic learning refers to the process of training machine learning models
on artificially generated data, rather than real-world data.

Benefits: data abundance, perfect ground truth, controlled data.
Challenges: domain gap, realism of the synthetic data.

For image restoration, what are the desired properties of these generators?
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Classification of synthetic image generators

Table: Classification of Synthetic Image Generators

Properties /
Category

No Semantic/
human bias

No Heavy
engineering

Property
disentanglement Practicality Diversity

Accuracy/
realism

3D rendering
engines 7 7 3 7 ∼ ∼

Deep Generative
Models 7 7 7 ∼ ∼ 3

Parametric
Procedural Models 3 3 3 3 ∼ ???

Parametric Procedural Models: Stochastic image generators, based on random processes.
Examples: Gaussian Textures, Fractals, Reaction Diffusion, Perlin Noise, Occlusion model.
→ The Dead Leaves Image Model [Matheron, 1968].
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The Dead Leaves Image Model : Basic concept

A random superimposition of shapes of random size, color, and positions.
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Mathematical formulation

the dead leaves model

a random process (𝑥𝑖, 𝑡𝑖, 𝑋𝑖)𝑖∈N

▶ 𝑥𝑖, 𝑡𝑖 ∼ P = Σ𝛿𝑥𝑖,𝑡𝑖 , a Poisson point process on R2 × (−∞, 0]

▶ 𝑋𝑖 random sets of R2; usually the set of disks of radius 𝑟𝑖 ∼ 𝑝(𝑟)

Useful definitions:

▶ A leaf: the set of positions 𝑥𝑖 + 𝑋𝑖

▶ The visible part: the positions of a leaf which are not covered by previous leaves:
𝑉𝑖 = (𝑥𝑖 + 𝑋𝑖)\ ⋃𝑡𝑗∈(𝑡𝑖,0)(𝑥𝑗 + 𝑋𝑗)

▶ dead leaves tesselation: 𝑇 = ⋃𝑖 𝑉𝑖

▶ the dead leaves image: the result of coloring the visible parts with 𝑐𝑖 ∼ 𝑞(𝑐)
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Examples I

▶ 𝑟 ∼ 𝑐𝑜𝑛𝑠𝑡 ▶ 𝑐 ∼ U([0, 1]3)

Properties

artificial colors, constant
shape size
→ not very natural.

Figure: Process sample
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Examples II

▶ 𝑟 ∼ 𝑐𝑜𝑛𝑠𝑡 ▶ 𝑐 ∼ color_histo(𝐼), 𝐼: natural image

Properties

colors sampled from a real
image’s histogram
→ same color distribution
over-simplistic geometry.

Figure: Process sample
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Examples III

▶ 𝑟 ∼ 𝑝(𝑟) = 𝐶.𝑟−𝛼 , usually 𝛼 = 3 ▶ 𝑐 ∼ color_histo(𝐼), 𝐼: natural image

Properties

natural colors + and power
law distribution of the radius.
Special case:
𝛼 = 3 → scale invariance
property.

Figure: Process sample

15/74



Dead Leaves in Computer Vision

1965
Invention of the Dead
Leaves Image model by
Georges Matheron for
porous media

1995-2002
Statistical modeling of
natural images scaling
property

▶ [Alvarez et al., 1999]

▶ [Lee et al., 2001]

2008-2014
Dead leaves im-
age model used for
camera evaluation
protocol as an SFR
target [Cao et al., 2009,
Artmann, 2015]

2021-today
Dead leaves images
used for training
deep neural net-
works.

▶ [Achddou et al., 2021,
Achddou et al., 2023a,
Achddou et al., 2023b]

▶ [Baradad et al., 2021,
Baradad et al., 2022]

▶ [Madhusudana et al., 2021]

The Dead Leaves
Model Chronology
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Advantages of the Dead Leaves Model

Advantages

▶ few parameters /good compromise
between complexity and fidelity

▶ ”natural” statistical properties.
▶ direct control over contrast, colors.
▶ direct control over invariance

properties:
∙ scale invariance
∙ rotation invariance
∙ shift invariance
∙ contrast invariance

(a) Distribution of the gradient
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Properties No Semantic/
human bias

No Heavy
engineering

Property
Factorization

Practicality Diversity Accuracy/
realism

Dead Leaves
Image Model

3 3 3 3 3 ∼

17/74



Advantages of the Dead Leaves Model

Advantages

▶ few parameters /good compromise
between complexity and fidelity

▶ ”natural” statistical properties.
▶ direct control over contrast, colors.
▶ direct control over invariance

properties:
∙ scale invariance
∙ rotation invariance
∙ shift invariance
∙ contrast invariance

(a) Distribution of the gradient

10 2 10 1

digital frequency

102

103

104

Fo
ur

ie
r s

pe
ct

ru
m

 m
od

ul
us

(b) Average 1-D power spectrum

Properties No Semantic/
human bias

No Heavy
engineering

Property
Factorization

Practicality Diversity Accuracy/
realism

Dead Leaves
Image Model

3 3 3 3 3 ∼

17/74



Case study: Training FFDNet with dead leaves images

FFDNet: a lightweight image denoising CNN[Zhang et al., 2018].
Architecture.

Experimental Protocol, presented in [Achddou et al., 2021] *

▶ Generate 10k DL images of size (500, 500, 3) / specific configuration as GT,
▶ Train FFDNet for color image denoising for each dataset
▶ Test the models on natural image benchmarks (CBSD68, Kodak24, McMaster).

*Synthetic Images as a Regularity Prior for Image Restoration Neural Networks, SSVM 2021
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Training with natural images

Database: 5000 images de from the
Waterloo Exploration Database.

PSNR: 31.54 dB
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Training with dead leaves images with a fixed radius

Database: a non gaussian random process
of dead leaves images with a fixed radius.

PSNR: 30.1 dB (-1.4)
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Training with dead leaves images with random radii

Database:
▶ DL images with scaling properties

(power law of radii with 𝛼 = 3 ,𝑟min = 1,
𝑟max = 2000)

▶ Colors uniformly drawn in the RGB cube.

PSNR: 29.6 dB (-1.8)
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Training with DL images with natural colors

▶ DL images with scaling properties
(power law of radii with 𝛼 = 3,𝑟min = 1,
𝑟max = 2000)

▶ Colors drawn from natural images
histograms

PSNR: 30.61 dB (-0.9)
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Training with DL images 𝑟𝑚𝑖𝑛 = 16

▶ DL images with scaling properties
(power law of radii with 𝛼 = 3,𝑟min = 16,
𝑟max = 2000)

▶ Colors drawn from natural images
histograms

PSNR: 30.55 dB (-1)
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Training with a mix of DL images with 𝑟𝑚𝑖𝑛 ∈ {1, 16}

Database: A mix of DL images with
𝛼 = 3, 𝑟𝑚𝑖𝑛 ∈ {1, 16}, 𝑟𝑚𝑎𝑥 = 2000.

PSNR: 30.94 dB (-0.6)
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Take-away Messages

Take-away Messages

→ Better insights on the crucial properties for training image restoration CNNs:

▶ Non-gaussianity of the image model (occlusions/Clear edges)
▶ Scale invariance property
▶ Color distribution close to natural images
▶ Diversity of the training database

→ Image restoration performances close to training with natural images.
→ Synthetic training is a good alternative that guarantees no semantic bias

BUT: some unanswered questions remain:

▶ Can this model be used for other tasks than denoising?
▶ Can we avoid using natural images for the color distribution?
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Extensions to harder imaging problems

→ Exploration in an extended work [Achddou et al., 2023a] *

▶ Single-Image
Super-Resolution

▶ Smartphone RAW Image
Denoising

▶ Low-Light RAW Image
Enhancement

Database: RAW Dead Leaves Images

Distortion Model: [Wei et al., 2021]
𝑌 = 𝑋

𝛾 + 𝑁𝑠 ( 𝑋
𝛾 ) + 𝑁𝑟 + 𝑁𝑏 + 𝑁𝑞,

A new model based on Diffusion Models [Lu et al., 2025]

Low-Light Enhancement Results: Results
of training a U-Net model [Chen et al., 2018]

*Fully synthetic training for image restoration tasks, CVIU 2023
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Data agnostic model: a parametric color model

Objective: Develop a sampling algorithm for plausible natural color histograms with a
parametric model [Achddou et al., 2023b]*

Figure: Lambertian objects distributed along a straight
line in the RAW-RGB cube

Consequent idea: Factorize chrominance
and luminance for a single object
𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑧|𝑥, 𝑦)⏟

luminance

𝑝(𝑥, 𝑦)⏟
chrominance

Chrominance model: Mixture of Gaussians fitted on a
large dataset of RAW images, in the chromaticity plane
(𝑥, 𝑦)

Luminance model: A Gamma distribution conditioned
on the chrominance

*Learning Raw Image Denoising Using a Parametric Color Image Model, ICIP 2023
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Limitations

Disadvantages

▶ oversimplistic geometry

▶ texture only arise from very small leaves / no repetitve textures

▶ completely flat areas

▶ no depth modeling except for occlusions

⟹ sub-optimal performances on Deep Learning tasks

Figure: Comparison of denoising results: natural vs Dead leaves training of DRUNet
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the vibrant leaves model



Dead Leaves vs Vibrant Leaves [Achddou et al., 2025]*

Differences between the two models

Properties Natural Scaling Depth Complex Repetitive
Colors properties modelling Geometry Textures

Dead Leaves model 3 3 ∼ 7 7

VibrantLeaves model 3 3 3 3 3

More precisely, we propose the following additions:
▶ A random free-form generator
▶ A texture model for repetitive and random textures
▶ A depth-of-field simulator

Figure: Dead Leaves vs Vibrant Leaves

*VibrantLeaves: A principled parametric image generator for training deep restoration models 30/74
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Geometry: a random free-form generator

VL geometry

A random shape generator based on 𝛼-shapes.
𝛼-shapes: a generalization of the convex hull, controlled by a parameter 𝛼. Special-case: 𝛼 = 1 leads
to the convex hull of the points.

▶ Base model: the 𝛼-shapes of a set of points uniformly sampled in a disk

▶ Curved model: a smoothening/thresholding of the alpha-shape

xi ∼ U(D1) 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6

(a) Base: 𝛼-shapes of a set of points
(b) Smoothening operation
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Textures modeling

What is a texture?

No clear definition of a texture: a pattern that repeats itself with slight modifications at
various scales. ∼ 2 types of textures

▶ pseudo-periodic textures

▶ micro-textures

DL model : only a few types of micro-textures, caused by the overlapping of small disks.

(a) Micro-textures (b) Pseudo-periodic textures

Goal:Propose an exemplar-free texture generator, based on principles of
randomness and repetitions.
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Textures modeling: Pseudo-Periodic Patterns

Pseudo-Periodic Pattern Generator

A model that creates pseudo-periodic interpolation maps 𝑇 between two col-
ors, with increasing complexity.

1. 𝑇1(𝑥, 𝜔) = sin(𝜔𝑥) a 1 or 2D sinusoidal map of random period,

2. 𝑇2(𝑥, 𝜔) = sigmoid(sin(𝜔𝑥), 𝛼), sharper transitions with a logit funtion

3. 𝑇3(𝑥) = stack({𝑇2(𝜔𝑖)}𝑖<𝑛)(𝑥) a random oscillating field, obtained by
stacking oscillations

4. 𝑇4(𝑥) = athmospheric_distortion(𝑇3(𝑥)), a displacement map obtained by
filtered noise maps.

𝑇2 : Sinusoidal textures 𝑇3 : Random periods 𝑇4 : Warped textures
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Textures modeling: Micro-textures

Common prior of natural images: |F(𝑥, 𝜈)| ≃ 𝐶
𝜈𝛼 with 𝛼 ∈ [2 − 𝜖, 2 + 𝜖].

Micro-texture generator

Inspired by the phase randomization texture model of [Galerne et al., 2010]:

1. Generate a white noise sample with a natural color histogram:

2. Fix the power spectrum to a power function (isotropic)

3. Reconstruct the image by inverse Fourier transform

𝛼 = 0.5 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0 𝛼 = 2.5
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Modeling depth and the acquisition process

Depth in natural images

▶ Perspective: a non-linear mapping of 3D
to 2D → vanishing points and parralel ines

▶ Depth-of-field: local, non-uniform blur
based on object depth

▶ Occlusions: Objects occlude each other in
the scene

Depth in the DL model

▶ only occlusions

▶ limitted model for physical depth

VL additions: A depth-of-filed simulator and a perspective model for texture
maps
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Modeling depth: Depth-of-field

Depth-of-field approximation: a tri-plane division of space: blurred background /
focused middle ground / blurred foreground

Figure: Diagram of the depth-of-field algorithm. After generating three DL stack (background,
middle-ground and foreground), we fuse them by applying blur kernels 𝐺𝜎1 , 𝐺𝜎2 respectively to
the background and foreground.
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VibrantLeaves: Examples of images

Figure: Examples of samples from the VibrantLeaves model, which integrates modeling for
geometry, textures, and depth.
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VibrantLeaves: Examples of images

Figure: Examples of samples from the VibrantLeaves model, which integrates modeling for
geometry, textures, and depth.
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VibrantLeaves: Statistical Properties

Figure: secon-order statistics comparison of DL (red), VL(blue) and Natural Images (black). (Left).
Histograms of the image gradient ||∇(𝐼)||2 estimated on 1000 patches of size (500 × 500) randomly
drawn from each datasets. The grey plot represents the same quantities in a log-linear
representation, to show the behavior better for higher gradient values. (Right). Average 1D power
spectrum (| ̂𝐼(𝜈)|) in a log-log representation for each datasets. To obtain a 1D representation, we
average the 2D power spectrum radially.
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Vibrant Leaves: FID scores

Metric FID ↓ KL-Gradient↓ 𝛼Spectrum (𝑅2)
(Nat = 1.43)

DL[Achddou et al., 2021] 318 0.286 1.73 (0.992)
CleVR[Johnson et al., 2017] 217 0.517 1.67 (0.992)
GTA-5[Richter et al., 2016] 186 0.015 1.49 (0.982)

FractalDB[Kataoka et al., 2020] 342 1.91 0.51 (0.584)
DL-textured[Baradad et al., 2021] 312 0.228 0.99 (0.98)

VL 193 0.006 1.41 (0.995)

Table: Comparison of image ”naturalness” metrics for different synthetic datasets. We report the
FID, as well as the KL of the gradient’s distribution computed with respect to the natural images
from WaterlooDB. We also report the slope 𝛼 of the power spectrum, as well as the 𝑅2 score of the
linear regression. Overall, VL has better metrics than the other synthetic image datasets.
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Image denoising results

Protocol:
▶ generate 10K images for every

configuration

▶ train a DRUNet denoiser on these
individual datasets

▶ test on natural image datasets

Test-set 𝜎 DRUNet FFDNet

Nat. Images VibrantLeaves DeadLeaves Nat. Images VibrantLeaves DeadLeaves

Kodak 24 25 32.89 32.16 30.95 32.13 31.72 30.91
50 29.86 29.14 28.09 28.98 28.61 28.02

CBSD68 25 31.69 31.21 30.20 31.21 30.85 30.23
50 28.51 28.06 27.18 27.96 27.68 27.19

McMaster 25 33.14 32.62 31.25 32.35 31.85 31.10
50 30.08 29.56 28.32 29.18 28.78 28.18

Table: Image denoising results of FFDNet and DRUNet trained on either NatImages, VibrantLeaves
or Dead leaves Best results are in bold and secon results are underlined.
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Image denoising examples

Ground Truth Noisy DRUNet DL DRUNet VL DRUNet Natural

Figure: Denoising visual results. We compare the same DRUNet architecture trained either on Dead
Leaves, Vibrant Leaves or Nat images.
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Image denoising examples

Ground Truth Noisy DRUNet DL DRUNet VL DRUNet Natural

Figure: Denoising visual results. We compare the same DRUNet architecture trained either on Dead
Leaves, Vibrant Leaves or Nat images.
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Single Image Super-Resolution

Protocol:
▶ generate 10K images for every

configuration

▶ train a lightweight SWINIR for SR at
scale 2 and 4

▶ test on natural image datasets Figure: SWINIR architecture

Test-set factor SWIN-IR

Natural Images VIbrantLeaves DeadLeaves

Set5 2 38.14 37.39 35.92
4 32.44 31.76 30.60

Set14 2 33.86 33.29 32.03
4 28.77 28.49 27.76

DIV2K 2 36.46 35.48 34.19
4 30.65 30.08 29.31

Table: Single-Image Super-Resolution results. The models are tested on several SISR benchmarks.
Best results are in bold and secon results are underlined.
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SISR examples

Ground Truth LR SWINIR DL SWINIR VL SWINIR Natural

Figure: SISR visual results. We compare the same SWIN-IR architecture trained either on Dead
Leaves, Vibrant Leaves or Nat images.
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SISR examples

Ground Truth LR SWINIR DL SWINIR VL SWINIR Natural

Figure: SISR visual results. We compare the same SWIN-IR architecture trained either on Dead
Leaves, Vibrant Leaves or Nat images.

46/74



advantages of synthetic learning



What are the advantages?

Questions

▶ Does the learned denoiser inherit invariance properties?
▶ Does the simplicity of the images lead to faster convergence of the training

algorithm?
▶ Can we isolate image properties that are crucial for image restoration NNs?
▶ Does the network understand the prior encoded in the VL images?
▶ Can we use the trained denoiser as a prior in PnP?
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Invariances Properties

Dead leaves images are supposed to have many invariances:

▶ Rotation ▶ scale ▶ Contrast ▶ shift

Is our learnt denoiser invariant to these? or better than the natural baseline...

Testing protocol

▶ find variances 𝜎1, 𝜎2 so that performances match
▶ test both models while varying the distortion.
▶ report the PSNR gap
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Rotation Invariance
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Figure: Performance gap for rotation invariance
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Scaling Invariance
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Figure: Performance gap for scale invariance
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Optimization landscape

Convergence of the Optimization algorithm

Vibrant Leaves images exhibit natural properties, but they all share similar
features.
→ Not as diverse as natural images.
Intuitively, the data distribution has a smaller support, and more data points.
Question: Is convergence to a good solution faster when training on Vibrant
Leaves images?

Can we measure the dimensionality of the training set?
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Vibrant Leaves images exhibit natural properties, but they all share similar
features.
→ Not as diverse as natural images.
Intuitively, the data distribution has a smaller support, and more data points.
Question: Is convergence to a good solution faster when training on Vibrant
Leaves images?

Can we measure the dimensionality of the training set?

Somehow.

▶ For each dataset (𝑥𝑖,𝑑)𝑖≤𝑁, project the images on a lower dimension space, using
the Inception features used for FID 𝑦𝑖,𝑑 = 𝐹𝐶Inception(𝑥𝑖,𝑑).

▶ Compute the covariance matrix of the features Σ𝑑 = 1
𝑁 ∑𝑖(𝑦𝑖,𝑑 − ̄𝑦𝑑)(𝑦𝑖,𝑑 − ̄𝑦𝑑)𝑇

▶ Compute the eigenvalues of Σ𝑑, observe their profiles.

The larger the eigenvalues, the more diverse the dataset, the higher its dimensionality.
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Optimization landscape: Experiments

Training Algorithm:

▶ Initial conditions: 𝜂 = 1.10−4, batch size 16, Adam optimizer.
▶ Perform 𝐾 gradient steps, by forming mini-batches randomly on the training set.
▶ Divide the learning rate by 2, Repeat until 𝜂 = 5.10−7

Experiments: Progressively reduce 𝐾 from 100K to 5K, observe the performance.
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We test eachmodel at 𝜎 =
25 and report the PSNR
delta with respect to the
model trained with 𝐾 =
100𝐾.
The optimization con-
verges faster with VL
images.
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Better insights on the functionning of NNs: Ablations

VibrantLeaves Ablation Study

Can we identify which properties of the VL model are responsible for the im-
provements?

Protocol: We remove one property at a time → train DRUNet on the modified images
→ test on natural images

Vibrant Leaves: all properties combined.

Without Depth: W/o depth-of-field modeling and perspective.

Without micro-textures : semi-periodic texture generator only.

Without periodic textures: micro-textures only.

Without textures
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Ablation Study: Results
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Better insights on the functionning of NNs: Prior Sampling

Goal: Visualize the prior learned by the denoising network.
Methods:

▶ Feature visualization by activation maximization / Deep Dream → doesn’t work well
for denoisers

▶ Sampling the implicit prior using Langevin sampling algorithms
[Kadkhodaie and Simoncelli, 2021, Leclaire et al., 2025]

Figure: Images sampled from ̃𝑝(𝑥) from a blind denoising network trained on natural images

→ Somewhat natural patterns, but not clear what is learned.
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Better insights on the functionning of NNs: Prior Sampling

Does the prior implicitly learnt by the network incorporate all the properties
we added to the dead leaves model?

˝occlusions of the dead leaves model,

˝shapes,

˝textures,

˝depth
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Sampling from the learnt image denoiser

(a) Pseudo-Periodic textures

(b) Occlusions and complex shapes
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Better insights on the functionning of NNs: Prior Sampling

(a) Gaussian Micro-textures (colored noise)

(b) Bi-level textures
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Better insights on the functionning of NNs: Prior Sampling

Learnt properties from Vibrant Leaves images:
3̋ occlusions of the dead leaves model,
3̋ shapes,
3̋ textures,
3̋ depth

Can we use this prior in the context of inverse problems?
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Plug-and-Play applications

Plug-and-Play

▶ Inverse problems formulation: 𝑥⋆ = arg min𝑥 ||𝑦 − 𝜙(𝑥)||22 + 𝜆𝜌(𝑥).
▶ Proximal splitting algorithms: alternate descent between

𝑓(𝑥) = ||𝑦 − 𝜙(𝑥)||22 and 𝜌(𝑥) ∼ 𝑙𝑜𝑔(𝑝(𝑥)).
▶ Plug-and-Play [Venkatakrishnan et al., 2013]: replace the proximal operator of 𝜌 by

a denoiser D.

Spectacular results using deep denoisers [Zhang et al., 2021], and many theoretical
results [Laumont et al., 2022, Hurault et al., 2022, Goujon et al., 2024] etc …
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Plug-and-Play applications: deblurring

Figure: Plug-and-Play Deblurring of the Monarch image. From left to right: Blurred image, PnP with
DRUNet trained on Vibrant Leaves (PSNR = 28.80dB), PnP with DRUNet trained on natural
images(PSNR = 29.24dB).
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conclusion and perspectives



Summary

Contributions

▶ Training deep image restoration networks on Dead Leaves images → good
performance, even for difficult real-world tasks

▶ Vibrant Leaves: a new parametric image model, built upon the dead leaves
model, with more natural image properties (depth, textures, shapes)

▶ Experimental validation of the model: from -2db to -0.6 db compared to DL
▶ A deeper dive into the advantages of synthetic training:

∙ Invariance properties
∙ Faster convergence of the training algorithm
∙ Ablation study: identify crucial image properties for image restoration NNs
∙ Sampling from the learnt prior
∙ Plug-and-Play applications
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Perspectives

Perspectives

▶ (In Progress): make the model differentiable: optimization of the
generation parameters to fit a specific target distribution

▶ Extend to other modalities: medical images, microscopy, SAR
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